Prescription Drug Name:







id: 2a872040-85b1-416b-9136-a0f53ab2c7a0
FDA Article Code: 34089-3

Sulfamethoxazole and trimethoprim is a synthetic antibacterial combination product available in DS (double strength) tablets, each containing 800 mg sulfamethoxazole and 160 mg trimethoprim; in tablets, each containing 400 mg sulfamethoxazole and 80 mg trimethoprim for oral administration. Sulfamethoxazole is N
1-(5-methyl-3-isoxazolyl)sulfanilamide; the molecular formula is C10H11N3O3S. It is an almost white, odorless, tasteless compound with a molecular weight of 253.28 and the following structural formula:
Trimethoprim is 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine; the molecular formula is C14H18N4O3. It is a white to light yellow, odorless, bitter compound with a molecular weight of 290.3 and the following structural formula: Inactive ingredients: Docusate sodium 85%, sodium benzoate 15%, sodium starch glycolate, magnesium stearate and pregelatinized starch.


id: 4490be95-0255-4f84-97a3-daeee19d4aad
FDA Article Code: 34090-1

Sulfamethoxazole and trimethoprim is rapidly absorbed following oral administration. Both sulfamethoxazole and trimethoprim exist in the blood as unbound, protein-bound and metabolized forms; sulfamethoxazole also exists as the conjugated form. Sulfamethoxazole is metabolized in humans to at least 5 metabolites: the N4-acetyl-, N4-hydroxy-, 5-methylhydroxy-, N4-acetyl- 5-methylhydroxy- sulfamethoxazole metabolites, and an N-glucuronide conjugate. The formulation of N4-hydroxy metabolite is mediated via CYP2C9. Trimethoprim is metabolized in vitro to 11 different metabolites, of which, five are glutathione adducts and six are oxidative metabolites, including the major metabolites, 1- and 3-oxides and the 3- and 4-hydroxy derivatives. The free forms of sulfamethoxazole and trimethoprim are considered to be the therapeutically active forms. In vitro studies suggest that trimethoprim is a substrate of P-glycoprotein, OCT1 and OCT2, and that sulfamethoxazole is not a substrate of P-glycoprotein. Approximately 70% of sulfamethoxazole and 44% of trimethoprim are bound to plasma proteins. The presence of 10 mg percent sulfamethoxazole in plasma decreases the protein binding of trimethoprim by an insignificant degree; trimethoprim does not influence the protein binding of sulfamethoxazole. Peak blood levels for the individual components occur 1 to 4 hours after oral administration. The mean serum half-lives of sulfamethoxazole and trimethoprim are 10 and 8 to 10 hours, respectively. However, patients with severely impaired renal function exhibit an increase in the half-lives of both components, requiring dosage regimen adjustment (see DOSAGE AND ADMINISTRATION section). Detectable amounts of sulfamethoxazole and trimethoprim are present in the blood 24 hours after drug administration. During administration of 800 mg sulfamethoxazole and 160 mg trimethoprim b.i.d., the mean steady-state plasma concentration of trimethoprim was 1.72 µg/mL. The steady-state mean plasma levels of free and total sulfamethoxazole were 57.4 µg/mL and 68.0 µg/mL, respectively. These steady-state levels were achieved after three days of drug administration.1 Excretion of sulfamethoxazole and trimethoprim is primarily by the kidneys through both glomerular filtration and tubular secretion. Urine concentrations of both sulfamethoxazole and trimethoprim are considerably higher than are the concentrations in the blood. The average percentage of the dose recovered in urine from 0 to 72 hours after a single oral dose of sulfamethoxazole and trimethoprim is 84.5% for total sulfonamide and 66.8% for free trimethoprim. Thirty percent of the total sulfonamide is excreted as free sulfamethoxazole, with the remaining as N4-acetylated metabolite.2 When administered together as sulfamethoxazole and trimethoprim, neither sulfamethoxazole nor trimethoprim affects the urinary excretion pattern of the other. Both sulfamethoxazole and trimethoprim distribute to sputum, vaginal fluid and middle ear fluid; trimethoprim also distributes to bronchial secretion, and both pass the placental barrier and are excreted in human milk.


id: 6715bd27-4444-4728-88d3-64136aacbd2b
FDA Article Code: 34067-9

To reduce the development of drug-resistant bacteria and maintain the effectiveness of sulfamethoxazole and trimethoprim tablets and other antibacterial drugs, sulfamethoxazole and trimethoprim tablets should be used only to treat or prevent infections that are proven or strongly suspected to be caused by susceptible bacteria. When culture and susceptibility information are available, they should be considered in selecting or modifying antibacterial therapy. In the absence of such data, local epidemiology and susceptibility patterns may contribute to empiric selection of therapy.


id: 16aabc02-11a3-4531-8a7a-8bb64eafe3d3
FDA Article Code: 34070-3

Sulfamethoxazole and trimethoprim is contraindicated in patients with a known hypersensitivity to trimethoprim or sulfonamides, in patients with a history of drug-induced immune thrombocytopenia with use of trimethoprim and/or sulfonamides, and in patients with documented megaloblastic anemia due to folate deficiency. Sulfamethoxazole and trimethoprim is contraindicated in pediatric patients less than 2 months of age. Sulfamethoxazole and trimethoprim is also contraindicated in patients with marked hepatic damage or with severe renal insufficiency when renal function status cannot be monitored.


id: 0f1a9e51-fd2a-4985-a1f7-cb617367ab20
FDA Article Code: 34084-4

The most common adverse effects are gastrointestinal disturbances (nausea, vomiting, anorexia) and allergic skin reactions (such as rash and urticaria). FATALITIES ASSOCIATED WITH THE ADMINISTRATION OF SULFONAMIDES, ALTHOUGH RARE, HAVE OCCURRED DUE TO SEVERE REACTIONS, INCLUDING STEVENS-JOHNSON SYNDROME, TOXIC EPIDERMAL NECROLYSIS, FULMINANT HEPATIC NECROSIS, AGRANULOCYTOSIS, APLASTIC ANEMIA AND OTHER BLOOD DYSCRASIAS (SEE WARNINGS SECTION). Hematologic: Agranulocytosis, aplastic anemia, thrombocytopenia, leukopenia, neutropenia, hemolytic anemia, megaloblastic anemia, hypoprothrombinemia, methemoglobinemia, eosinophilia. Allergic Reactions: Stevens-Johnson syndrome, toxic epidermal necrolysis, anaphylaxis, allergic myocarditis, erythema multiforme, exfoliative dermatitis, angioedema, drug fever, chills, Henoch-Schoenlein purpura, serum sickness-like syndrome, generalized allergic reactions, generalized skin eruptions, photosensitivity, conjunctival and scleral injection, pruritus, urticaria and rash. In addition, periarteritis nodosa and systemic lupus erythematosus have been reported. Gastrointestinal: Hepatitis (including cholestatic jaundice and hepatic necrosis), elevation of serum transaminase and bilirubin, pseudomembranous enterocolitis, pancreatitis, stomatitis, glossitis, nausea, emesis, abdominal pain, diarrhea, anorexia. Genitourinary: Renal failure, interstitial nephritis, BUN and serum creatinine elevation, toxic nephrosis with oliguria and anuria, crystalluria and nephrotoxicity in association with cyclosporine. Metabolic and Nutritional: Hyperkalemia, hyponatremia (see PRECAUTIONS: Electrolyte Abnormalities ). Neurologic: Aseptic meningitis, convulsions, peripheral neuritis, ataxia, vertigo, tinnitus, headache. Psychiatric: Hallucinations, depression, apathy, nervousness. Endocrine: The sulfonamides bear certain chemical similarities to some goitrogens, diuretics (acetazolamide and the thiazides) and oral hypoglycemic agents. Cross-sensitivity may exist with these agents. Diuresis and hypoglycemia have occurred rarely in patients receiving sulfonamides. Musculoskeletal: Arthralgia and myalgia. Isolated cases of rhabdomyolysis have been reported with sulfamethoxazole and trimethoprim, mainly in AIDS patients. Respiratory: Cough, shortness of breath and pulmonary infiltrates (see WARNINGS ). Miscellaneous: Weakness, fatigue, insomnia.


id: 155e3436-fc28-4b76-b8ca-af1d0f3fc100
FDA Article Code: 34068-7

Sulfamethoxazole and trimethoprim is contraindicated in pediatric patients less than 2 months of age.


id: 6f546613-0f9c-46cb-ba48-ae13629d5543
FDA Article Code: 34069-5

Sulfamethoxazole and trimethoprim tablets, USP are supplied as follows: Sulfamethoxazole 400 mg and trimethoprim 80 mg tablets, white, round, scored, debossed MP 81

Bottles of 100 NDC 53489-145-01
Bottles of 500 NDC 53489-145-05
Sulfamethoxazole 800 mg and trimethoprim 160 mg tablets, double strength, white, oval shaped, scored, debossed MP 85
Bottles of 100 NDC 53489-146-01
Bottles of 500 NDC 53489-146-05


id: e8dcd2ef-9126-423f-88d4-50b30d3d2758
FDA Article Code: 34093-5

Kremers P, Duvivier J, Heusghem C. Pharmacokinetic Studies of Co-Trimoxazole in Man after Single and Repeated Doses. J Clin Pharmacol. Feb-Mar 1974; 14:112–117.
Kaplan SA, et al. Pharmacokinetic Profile of Trimethoprim-Sulfamethoxazole in Man. J Infect Dis. Nov 1973; 128 (Suppl): S547–S555.
Varoquaux O, et al. Pharmacokinetics of the trimethoprim-sulfamethoxazole combination in the elderly. Br J Clin Pharmacol. 1985;20:575–581.
Rudoy RC, Nelson JD, Haltalin KC. Antimicrobial Agents Chemother. May 1974;5:439–443.
Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard – 9th ed. CLSI document M07–A9, CLSI, Wayne, PA, 2012.
Safrin S, Lee BL, Sande MA. Adjunctive folinic acid with trimethoprim-sulfamethoxazole for Pneumocystis carinii pneumonia in AIDS patients is associated with an increased risk of therapeutic failure and death. J Infect Dis. 1994 Oct;170(4):912-7.
Hardy DW, et al. A controlled trial of trimethoprim-sulfamethoxazole or aerosolized pentamidine for secondary prophylaxis of Pneumocystis carinii pneumonia in patients with the acquired immunodeficiency syndrome. N Engl J Med. 1992; 327: 1842–1848.
Marinella Mark A. 1999. Trimethoprim-induced hyperkalemia: An analysis of reported cases. Gerontol. 45:209–212.
Margassery, S. and B. Bastani. 2002. Life threatening hyperkalemia and acidosis secondary to trimethoprim-sulfamethoxazole treatment. J. Nephrol. 14:410–414.
Brumfitt W, Pursell R. Trimethoprim/Sulfamethoxazole in the Treatment of Bacteriuria in Women. J Infect Dis. Nov 1973; 128 (Suppl):S657–S663.
Masur H. Prevention and treatment of Pneumocystis pneumonia. N Engl J Med. 1992; 327: 1853–1880.
Recommendations for prophylaxis against Pneumocystis carinii pneumonia for adults and adolescents infected with human immunodeficiency virus. MMWR. 1992; 41(RR-4):1–11.
CDC Guidelines for prophylaxis against Pneumocystis carinii pneumonia for children infected with human immunodeficiency virus. MMWR. 1991; 40(RR-2):1–13.
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard – 11th ed. CLSI document M02–A11, CLSI, Wayne, PA, 2012.
Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing; Twenty-third Informational Supplement, CLSI document M100–S23. CLSI document M100–S23, Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2013.

PRINCIPAL DISPLAY PANEL – 800/160 MG Tablet Bottle Label

id: f5d0e758-cd17-4543-8959-c9e21252dc8e
FDA Article Code: 51945-4

Austin’s Health & Human Services Dept. SMZ/TMP
# 8
Date: Name:

Dr. TAKE 1 TABLET BY MOUTH 2 TIMES DAILY FOR 4 DAYS. 123456 1/1/01 SULFA/TRIM 800MG/160MG #8 NDC 76413-135-08 Batch: 123456
Lot: 123456
Exp: 1/1/01
Federal law prohibits the transfer of this drug to any other person than the patient for whom prescribed.