DESCRIPTION
id: 9d8c0d9a-6328-4072-98ae-51d791e9944c
displayName: DESCRIPTION SECTION
FDA Article Code: 34089-3
Potassium chloride extended-release capsules, USP are an oral dosage form of microencapsulated potassium chloride containing 600 mg and 750 mg of potassium chloride, USP, equivalent to 8 mEq and 10 mEq of potassium, respectively.
Dispersibility of potassium chloride (KCl) is accomplished by microencapsulation and a dispersing agent. The resultant flow characteristics of the KCl microcapsules and the controlled release of K+ ions by the microcapsular membrane are intended to avoid the possibility that excessive amounts of KCl can be localized at any point on the mucosa of the gastrointestinal tract.
Each crystal of KCl is microencapsulated by a patented process with an insoluble polymeric coating which functions as a semi-permeable membrane; it allows for the controlled release of potassium and chloride ions over an eight- to ten-hour period. Fluids pass through the membrane and gradually dissolve the potassium chloride within the microcapsules. The resulting potassium chloride solution slowly diffuses outward through the membrane. Potassium chloride extended-release capsules, USP, are electrolyte replenishers. The chemical name of the active ingredient is potassium chloride and the structural formula is KCl. Potassium chloride, USP, occurs as a white granular powder or as colorless crystals. It is odorless and has a saline taste. Its solutions are neutral to litmus. It is freely soluble in water and insoluble in alcohol.
Inactive ingredients: edible ink, ethylcellulose, FD&C Blue No. 2 aluminum lake, FD&C Yellow No. 6, gelatin, magnesium stearate, sodium lauryl sulfate, titanium dioxide. May contain FD&C Red No. 40 and FD&C Yellow No. 6 aluminum lakes.
CLINICAL PHARMACOLOGY
id: 57d944aa-a667-49dd-9504-90ad4baa1f96
displayName: CLINICAL PHARMACOLOGY SECTION
FDA Article Code: 34090-1
Potassium ion is the principal intracellular cation of most body tissues. Potassium ions participate in a number of essential physiological processes, including the maintenance of intracellular tonicity; the transmission of nerve impulses; the contraction of cardiac, skeletal and smooth muscle; and the maintenance of normal renal function.
The intracellular concentration of potassium is approximately 150 to 160 mEq per liter. The normal adult plasma concentration is 3.5 to 5 mEq per liter. An active ion transport system maintains this gradient across the plasma membrane.
Potassium is a normal dietary constituent and under steady-state conditions the amount of potassium absorbed from the gastrointestinal tract is equal to the amount excreted in the urine. The usual dietary intake of potassium is 50 to 100 mEq per day.
Potassium depletion will occur whenever the rate of potassium loss through renal excretion and/or loss from the gastrointestinal tract exceeds the rate of potassium intake. Such depletion usually develops slowly as a consequence of therapy with diuretics, primary or secondary hyperaldosteronism, diabetic ketoacidosis, or inadequate replacement of potassium in patients on prolonged parenteral nutrition. Depletion can develop rapidly with severe diarrhea, especially if associated with vomiting. Potassium depletion due to these causes is usually accompanied by a concomitant loss of chloride and is manifested by hypokalemia and metabolic alkalosis. Potassium depletion may produce weakness, fatigue, disturbances of cardiac rhythm (primarily ectopic beats), prominent U-waves in the electrocardiogram, and in advanced cases, flaccid paralysis and/or impaired ability to concentrate urine.
If potassium depletion associated with metabolic alkalosis cannot be managed by correcting the fundamental cause of the deficiency (e.g., where the patient requires long-term diuretic therapy), supplemental potassium in the form of high potassium food or potassium chloride may be able to restore normal potassium levels.
In rare circumstances (e.g., patients with renal tubular acidosis) potassium depletion may be associated with metabolic acidosis and hyperchloremia. In such patients potassium replacement should be accomplished with potassium salts other than the chloride, such as potassium bicarbonate, potassium citrate, potassium acetate, or potassium gluconate.
INDICATIONS AND USAGE
id: c9da0b0a-c829-4c89-a65c-265d7fc8d056
displayName: INDICATIONS & USAGE SECTION
FDA Article Code: 34067-9
BECAUSE OF REPORTS OF INTESTINAL AND GASTRIC ULCERATION AND BLEEDING WITH CONTROLLED-RELEASE POTASSIUM CHLORIDE PREPARATIONS, THESE DRUGS SHOULD BE RESERVED FOR THOSE PATIENTS WHO CANNOT TOLERATE OR REFUSE TO TAKE LIQUID OR EFFERVESCENT POTASSIUM PREPARATIONS OR FOR PATIENTS IN WHOM THERE IS A PROBLEM OF COMPLIANCE WITH THESE PREPARATIONS.
1. For the treatment of patients with hypokalemia, with or without metabolic alkalosis, in digitalis intoxications, and in patients with hypokalemic familial periodic paralysis. If hypokalemia is the result of diuretic therapy, consideration should be given to the use of a lower dose of diuretic, which may be sufficient without leading to hypokalemia.
2. For the prevention of hypokalemia in patients who would be at particular risk if hypokalemia were to develop, (e.g., digitalized patients or patients with significant cardiac arrhythmias, hepatic cirrhosis with ascites, states of aldosterone excess with normal renal function, potassium-losing nephropathy, and certain diarrheal states).
The use of potassium salts in patients receiving diuretics for uncomplicated essential hypertension is often unnecessary when such patients have a normal dietary pattern and when low doses of the diuretic are used. Serum potassium should be checked periodically, however, and if hypokalemia occurs, dietary supplementation with potassium-containing foods may be adequate to control milder cases. In more severe cases, and if dose adjustment of the diuretic is ineffective or unwarranted, supplementation with potassium salts may be indicated.
CONTRAINIDICATIONS
id: 81dd72c7-5f13-48e9-b7f2-87a2d64d8f04
displayName: CONTRAINDICATIONS SECTION
FDA Article Code: 34070-3
Potassium supplements are contraindicated in patients with hyperkalemia since a further increase in serum potassium concentration in such patients can produce cardiac arrest. Hyperkalemia may complicate any of the following conditions: chronic renal failure, systemic acidosis such as diabetic acidosis, acute dehydration, extensive tissue breakdown as in severe burns, adrenal insufficiency, or the administration of a potassium-sparing diuretic (e.g., spironolactone, triamterene, amiloride) (see
OVERDOSAGE
).
Controlled-release formulations of potassium chloride have produced esophageal ulceration in certain cardiac patients with esophageal compression due to an enlarged left atrium. Potassium supplementation, when indicated in such patients, should be given as a liquid preparation.
All solid oral dosage forms of potassium chloride are contraindicated in any patient in whom there is structural, pathological (e.g., diabetic gastroparesis) or pharmacologic (e.g., use of anticholinergic agents or other agents with anticholinergic properties at sufficient doses to exert anticholinergic effects) cause for arrest or delay in capsule passage through the gastrointestinal tract.
WARNINGS
id: ca7ce92e-d517-40fa-8735-1095d925eddc
displayName: WARNINGS SECTION
FDA Article Code: 34071-1
Hyperkalemia (see
OVERDOSAGE
)
In patients with impaired mechanisms for excreting potassium, the administration of potassium salts can produce hyperkalemia and cardiac arrest. This occurs most commonly in patients given potassium by the intravenous route but may also occur in patients given potassium orally. Potentially fatal hyperkalemia can develop rapidly and be asymptomatic. The use of potassium salts in patients with chronic renal disease, or any other condition which impairs potassium excretion, requires particularly careful monitoring of the serum potassium concentration and appropriate dosage adjustments.
Interaction with Potassium-Sparing Diuretics
Hypokalemia should not be treated by the concomitant administration of potassium salts and a potassium-sparing diuretic (e.g., spironolactone, triamterene or amiloride) since the simultaneous administration of these agents can produce severe hyperkalemia.
Interaction with Angiotensin Converting Enzyme Inhibitors
Angiotensin converting enzyme (ACE) inhibitors (e.g., captopril, enalapril) will produce some potassium retention by inhibiting aldosterone production. Potassium supplements should be given to patients receiving ACE inhibitors only with close monitoring.
Gastrointestinal Lesions
Solid oral dosage forms of potassium chloride can produce ulcerative and/or stenotic lesions of the gastrointestinal tract. Based on spontaneous adverse reaction reports, enteric-coated preparations of potassium chloride are associated with an increased frequency of small bowel lesions (40-50 per 100,000 patient years) compared to sustained-release wax matrix formulations (less than one per 100,000 patient years). Because of the lack of extensive marketing experience with microencapsulated products, a comparison between such products and wax matrix or enteric-coated products is not available. Potassium chloride extended-release capsules, USP, are microencapsulated capsules formulated to provide a controlled rate of release of microencapsulated potassium chloride and thus to minimize the possibility of high local concentration of potassium near the gastrointestinal wall.
Prospective trials have been conducted in normal human volunteers in which the upper gastrointestinal tract was evaluated by endoscopic inspection before and after one week of solid oral potassium chloride therapy. The ability of this model to predict events occurring in usual clinical practice is unknown. Trials which approximated usual clinical practice did not reveal any clear differences between the wax matrix and microencapsulated dosage forms. In contrast, there was a higher incidence of gastric and duodenal lesions in subjects receiving a high dose of a wax matrix controlled-release formulation under conditions which did not resemble usual or recommended clinical practice (i.e., 96 mEq per day in divided doses of potassium chloride administered to fasted patients, in the presence of an anticholinergic drug to delay gastric emptying). The upper gastrointestinal lesions observed by endoscopy were asymptomatic and were not accompanied by evidence of bleeding (hemoccult testing). The relevance of these findings to the usual conditions (i.e., non-fasting, no anticholinergic agent, smaller doses) under which controlled-release potassium chloride products are used is uncertain; epidemiologic studies have not identified an elevated risk, compared to microencapsulated products, for upper gastrointestinal lesions in patients receiving wax matrix formulations. Potassium chloride extended-release capsules, USP, should be discontinued immediately and the possibility of ulceration, obstruction or perforation considered if severe vomiting, abdominal pain, distention, or gastrointestinal bleeding occur.
Metabolic Acidosis
Hypokalemia in patients with metabolic acidosis should be treated with an alkalinizing potassium salt, such as potassium bicarbonate, potassium citrate, potassium acetate or potassium gluconate.
ADVERSE REACTIONS
id: dae9f6d4-7d7e-48a9-b6cd-38c8436d3e6f
displayName: ADVERSE REACTIONS SECTION
FDA Article Code: 34084-4
One of the most severe adverse effects is hyperkalemia (see
CONTRAINDICATIONS,
WARNINGS
, and
OVERDOSAGE
).
Gastrointestinal bleeding and ulceration have been reported in patients treated with potassium chloride extended-release capsules, USP (see
CONTRAINDICATIONS
and
WARNINGS
). In addition to gastrointestinal bleeding and ulceration, perforation and obstruction have been reported in patients treated with other solid KCl dosage forms, and may occur with potassium chloride extended-release capsules, USP.
The most common adverse reactions to the oral potassium salts are nausea, vomiting, flatulence, abdominal discomfort, and diarrhea. These symptoms are due to irritation of the gastrointestinal tract and are best managed by taking the dose with meals, or reducing the amount taken at one time. Skin rash has been reported rarely with potassium preparations.
OVERDOSAGE
id: 62ebc20c-c787-412e-abaf-a462218c5f8e
displayName: OVERDOSAGE SECTION
FDA Article Code: 34088-5
The administration of oral potassium salts to persons with normal excretory mechanisms for potassium rarely causes serious hyperkalemia. However, if excretory mechanisms are impaired, or if potassium is administered too rapidly intravenously, potentially fatal hyperkalemia can result (see
CONTRAINDICATIONS
and
WARNINGS
). It is important to recognize that hyperkalemia is usually asymptomatic and may be manifested only by an increased serum potassium concentration (6.5 – 8.0 mEq/L) and characteristic electrocardiographic changes (peaking of T-waves, loss of P-waves, depression of ST segment, and prolongation of the QT interval). Late manifestations include muscle paralysis and cardiovascular collapse from cardiac arrest (9 – 12 mEq/L).
Treatment measures for hyperkalemia include the following: (1) elimination of foods and medications containing potassium and of any agents with potassium-sparing properties; (2) intravenous administration of 300 to 500 mL/hr of 10% dextrose solution containing 10 to 20 units of crystalline insulin per 1,000 mL; (3) correction of acidosis, if present, with intravenous sodium bicarbonate; (4) use of exchange resins, hemodialysis, or peritoneal dialysis. In treating hyperkalemia, it should be recalled that in patients who have been stabilized on digitalis, too rapid a lowering of the serum potassium concentration can produce digitalis toxicity.
The extended release feature means that absorption and toxic effects may be delayed for hours. Consider standard measures to remove any unabsorbed drug.
DOSAGE AND ADMINISTRATION
id: dce28625-8c44-4ab9-9d5a-60ef6ba306ab
displayName: DOSAGE & ADMINISTRATION SECTION
FDA Article Code: 34068-7
The usual dietary intake of potassium by the average adult is 50 to 100 mEq per day. Potassium depletion sufficient to cause hypokalemia usually requires the loss of 200 mEq or more of potassium from the total body store.
Dosage must be adjusted to the individual needs of each patient. The dose for the prevention of hypokalemia is typically in the range of 20 mEq per day. Doses of 40 to 100 mEq per day or more are used for the treatment of potassium depletion. Dosage should be divided if more than 20 mEq per day is given such that no more than 20 mEq is given in a single dose. Because of the potential for gastric irritation (see
WARNINGS
), potassium chloride extended-release capsules, USP, should be taken with meals and with a full glass of water or other liquid.
Patients who have difficulty swallowing capsules may sprinkle the contents of the capsule onto a spoonful of soft food. The soft food, such as applesauce or pudding, should be swallowed immediately without chewing and followed with a glass of cool water or juice to ensure complete swallowing of the microcapsules. The food used should not be hot and should be soft enough to be swallowed without chewing. Any microcapsule/food mixture should be used immediately and not stored for future use.
HOW SUPPLIED
id: 30f7c34b-de92-4e4b-802c-6b1fe8f2cde4
displayName: HOW SUPPLIED SECTION
FDA Article Code: 34069-5
Potassium chloride extended-release capsules, USP, containing 600 mg of microencapsulated potassium chloride (equivalent to 8 mEq K), are pale orange capsules, imprinted “002” on the cap and body.
Potassium chloride extended-release capsules, USP, containing 750 mg of microencapsulated potassium chloride (equivalent to 10 mEq K), are pale orange and opaque white capsules, imprinted “001” on the cap and body, packaged as follows:
NDC 0615-7694-39 blistercards of 30 capsules
NDC 0615-7694-31 blistercards of 31 capsules
NDC 0615-7694-05 blistercards of 15 capsules
NDC 0615-7694-14 blistercards of 14 capsules
NDC 0615-7694-30 unit-dose boxes of 30 capsules
Store at 20° – 25°C (68° – 77°F). [See USP Controlled Room Temperature.]
Dispense in tight container as defined in the USP.
Manufactured By:
Nesher Pharmaceuticals USA LLC.
St. Louis, MO 63044
Distributed By:
Zydus Pharmaceuticals USA Inc.
Pennington, NJ 08534
P10107 11/13
PRINCIPAL DISPLAY PANEL
id: 731a8e24-f2b9-4744-8811-3ff5335a0d82
displayName: PACKAGE LABEL.PRINCIPAL DISPLAY PANEL
FDA Article Code: 51945-4
Potassium Chloride
Extended-Release
Capsules, USP
10 mEq (750 mg)
Rx Only